ESETT EEG ANCILLARY STUDY

September 18, 2015
John Betjemann, MD
Brian Litt, MD
Outline

• Significance/Purpose
• Study Overview
• Specific Aims
• Study Equipment
 • Jordan BraiNet
 • RhythmLink Disposable PressOn™ electrodes
• Study Approach
• Challenges
• Sample Set-up and EEG
Significance/Purpose

• Emergent EEG (eEEG) would allow for early identification of SE

• Early treatment is key to avoiding pharmacoresistance

• A feasible system for eEEG in the ED could usher in a new standard of care for SE and help define a new era in SE treatment
Ancillary EEG Study Overview

• Subset of ESETT patients
• Validate ESETT primary outcome:
 • Clinical cessation of seizures
 • Important patient-oriented outcome but how prevalent are misclassification errors?
• EEG is gold standard for determining seizure cessation
 • Is eEEG practical?
 • Should it be used for all urgent patients?
• **AIM 1:** To characterize the operational parameters of obtaining an eEEG, applied by a non-EEG technologist, among patients with SE in the ED within sufficient time to evaluate immediate therapeutic outcomes.

• **This requires**
 - Trained, available non-EEG techs
 - Foolproof technical setup
 - No interference with clinical care
 - Quick data quality check
• **AIM 2:** To determine the inter-rater agreement for the presence or absence of electrographic SE, and the time of seizure cessation, from an eEEG collected within 60 minutes of enrollment in ESETT, using a rapid and quantitatively implementable scoring system on a cloud-based EEG platform.

• **This requires**
 • Consensus definition of SE
 • Quantifiable, reproducible
 • Assessable with statistics
• **Aim 3:** To characterize the concordance of clinical and electrographic outcomes in ESETT participants and to qualitatively and quantitatively describe discordant clinical scenarios
EEG Equipment/Set-up

• All equipment is FDA approved
• Jordan Neuroscience BraiNet®
 • Pediatric and adult sizes
 • Full international 10/20 system
 • 19 recording electrodes, ground and reference
EEG Equipment/Set-up

- RhythmLink Disposable PressOn™ electrodes
 - Subdermal
 - Minimize infection risk
Approach: Aim 1 Feasibility

- **Study personnel**
 - Will **NOT** have prior EEG experience
 - Standardized training: in person, video

- **Study population**
 - **Inclusion**
 - ESETT pt not at their baseline mental status
 - **Exclusion**
 - Returned to baseline mental status
 - Recent (6 months) skull defect
 - Extensive scalp infection/wound precluding electrode placement
Approach: Aim 1

- **Consent**
 - Similar to ESETT patients will be unable to provide consent
 - Anticipate either
 - surrogate consent or
 - waiver of consent initially with delayed consent to use data
Approach: Aim 1

- Timing of EEG
Approach: Aim 1

• Primary outcome: Feasibility
 • Time sensitive
 • Series of time points detailing EEG hookup process
 • Quality
 • # of electrodes dislodged
 • Signal to noise ratio of 3:1
 • Questionnaire for expert EEG reviewers
 • Interference with clinical care
 • Post-EEG questionnaire for primary nurse and physician
 • Was EEG disconnected early
Approach: Aim 2 IRR

- EEGs will be reviewed at a later date
 - Panel of 3-5 “expert” reviewers

- IRR for EEG interpretation quite variable

- Proposed Likert Scale
 1. Definite SE on EEG
 2. Likely SE (would treat further)
 3. Likely not SE (would not treat further)
 4. Definitely not SE

- Did the EEG improve over time?
Approach: Aim 2

- **Salzburg Consensus Criteria and ACNS**
 - Patients without preexisting epileptic encephalopathy
 1. Epileptiform discharges (EDs) >2.5 Hz
 2. Spatiotemporal evolution of either
 a) EDs <2.5 Hz or
 b) Rhythmic activity (≤4 Hz)
 3. Subtle ictal clinical phenomena with
 a) EDs <2.5 Hz or
 b) Rhythmic activity (≤4 Hz)
 4. If 1-3 not fulfilled, would need to document electrographic response to AEDs
Approach: Aim 3 Concordance

• Qualitatively and quantitatively describe the scenarios

<table>
<thead>
<tr>
<th>EEG</th>
<th>No electrographic seizures</th>
<th>Electrographic Seizures</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical SE cessation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ongoing SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges

• **Aim 1**
 - How many sites to involve
 - Who will be doing the EEGs at each site
 - Timing of EEG initiation
 - Assessing/determining return to baseline mental status as an exclusion criteria
 - Defining an interruption in standard clinical care

• **Aim 2**
 - Definition of electrographic seizure and SE
 - Not differentiating between seizures and SE electrographically
 - How to deal with patients with preexisting epileptic encephalopathy
 - How much can we rely on having clinical data for our definition of SE
 - Salzburg Consensus Criteria
 - “for research purposes, patient qualifies for NCSE if EEG and/or clinical improvement is documented, provided the clinical context is also in concordance with that”

• **Aim 3**
 - How valid is concordance if we are not studying the entire ESETT population
Sample Set-up